Functionalized graphene sheets for polymer nanocomposites.

نویسندگان

  • T Ramanathan
  • A A Abdala
  • S Stankovich
  • D A Dikin
  • M Herrera-Alonso
  • R D Piner
  • D H Adamson
  • H C Schniepp
  • X Chen
  • R S Ruoff
  • S T Nguyen
  • I A Aksay
  • R K Prud'Homme
  • L C Brinson
چکیده

Polymer-based composites were heralded in the 1960s as a new paradigm for materials. By dispersing strong, highly stiff fibres in a polymer matrix, high-performance lightweight composites could be developed and tailored to individual applications. Today we stand at a similar threshold in the realm of polymer nanocomposites with the promise of strong, durable, multifunctional materials with low nanofiller content. However, the cost of nanoparticles, their availability and the challenges that remain to achieve good dispersion pose significant obstacles to these goals. Here, we report the creation of polymer nanocomposites with functionalized graphene sheets, which overcome these obstacles and provide superb polymer-particle interactions. An unprecedented shift in glass transition temperature of over 40 degrees C is obtained for poly(acrylonitrile) at 1 wt% functionalized graphene sheet, and with only 0.05 wt% functionalized graphene sheet in poly(methyl methacrylate) there is an improvement of nearly 30 degrees C. Modulus, ultimate strength and thermal stability follow a similar trend, with values for functionalized graphene sheet- poly(methyl methacrylate) rivaling those for single-walled carbon nanotube-poly(methyl methacrylate) composites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold.

Flexible nanodielectric materials with high dielectric constant and low dielectric loss have huge potential applications in the modern electronic and electric industry. Graphene sheets (GS) and reduced-graphene oxide (RGO) are promising fillers for preparing flexible polymer-based nanodielectric materials because of their unique two-dimensional structure and excellent electrical and mechanical ...

متن کامل

Graphene-polymer nanocomposites for structural and functional applications

The introduction of graphene-based nanomaterials has prompted the development of flexible nanocomposites for emerging applications in need of superior mechanical, thermal, electrical, optical, and chemical performance. These nanocomposites exhibit outstanding structural performance and multifunctional properties by synergistically combining the characteristics of both components if proper struc...

متن کامل

Interfacial Strength and Physical Properties of Functionalized Graphene – Epoxy Nanocomposites

The toughness and coefficient of thermal expansion of a series of functionalized graphene sheet epoxy nanocomposites are investigated. Functionalized graphene sheets are produced by splitting graphite oxide into single graphene sheets through a rapid thermal expansion process. These graphene sheets contain ~ 10% oxygen due to the presence of hydroxide, epoxide, and carboxyl functional groups wh...

متن کامل

Multiscale model to investigate the effect of graphene on the fracture characteristics of graphene/polymer nanocomposites

In this theoretical research work, the fracture characteristics of graphene-modified polymer nanocomposites were studied. A three-dimensional representative volume element-based multiscale model was developed in a finite element environment. Graphene sheets were modeled in an atomistic state, whereas the polymer matrix was modeled as a continuum. Van der Waals interactions between the matrix an...

متن کامل

Atomistic simulation of surface functionalization on the interfacial properties of graphene-polymer nanocomposites

Articles you may be interested in Broadband saturable absorption and optical limiting in graphene-polymer composites Appl. Microwave and mechanical properties of quartz/graphene-based polymer nanocomposites Appl. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications J. The importance of bendability in the percolation behavior of carbon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 3 6  شماره 

صفحات  -

تاریخ انتشار 2008